lopscience = [lopscienceioporg

Home Search Collections Journals About Contactus My IOPscience

The geometry and significance of weak energy

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2000 J. Phys. A: Math. Gen. 33 2555
(http://iopscience.iop.org/0305-4470/33/13/308)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.118
The article was downloaded on 02/06/2010 at 08:03

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/33/13
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J. Phys. A: Math. Ger83(2000) 2555-2567. Printed in the UK PIl: S0305-4470(00)07661-7

The geometry and significance of weak energy

A D Parks
Quantum Processing Group, Systems Research and Technology Department, Naval Surface
Warfare Center, Dahlgren, VA 22448, USA

E-mail: parksad@nswc.navy.mil
Received 10 September 1999, in final form 13 December 1999

Abstract. The theory of weak values for quantum mechanical observables has come to serve
as a useful basis for contemporary discussions concerning such varied topics as the tunnelling-
time controversy and quantum stochastic processes. An intrinsic complex-valued weak energy has
recently been observed experimentally and reported in the literature. In this paper it is shown that:
(a) the real and imaginary valued parts of this weak energy have geometric interpretations related
to a phase acquired from parallel transport in Hilbert space and the variational dynamics occurring
in the associated projective Hilbert space, respectively; (b) the weak energy defines functions
which translate correlation amplitudes and probabilities in time; (c) correlation probabilities can
be controlled by manipulating the weak energy and there exists a condition of weak stationarity
that guarantees their time invariance; and (d) a time-weak energy uncertainty relation of the usual
form prevails when a suitable set of dynamical constraints are imposed.

1. Introduction

The use of pre-selection and post-selection measurement techniques for the control and
manipulation of quantum physical systems was first introduced byo8utger [1, 2] over half

a century ago. As aresult of the recent advent of precision experimental instrumentation, there
has been a renewed theoretical and utilitarian interest in such methods [3—6]. An especially
interesting related application, the notion of the ‘weak value’ of a quantum mechanical
observable, has been introduced by Aharoebwal [7, 8] and Aharonov and Vaidman [9]
(hereafter referred to collectively as AAV). This value is the statistical result of a standard
measurement procedure upon a pre-selected and post-selected ensemble of quantum systems
when the interaction between the measuring apparatus and the system is sufficiently weak.

AAV’s analyses led to the controversial result that such a measurement procedure can yield
values for an observable that lie well outside its associated eigenvalue spectrum [10, 11]. This
controversy was resolved in atheoretical sense by [Btiaf12] (hereafter referred to as DSS),
who showed that these results were completely consistent with conventional interpretations
of quantum mechanics. Since then, weak values have been discussed from a foundational
perspective in the context of elements of reality [13] and non-locality [14]; have been associated
with conditional probabilities in order to study the tunnelling-time controversy [15, 16]; and
have been applied to the description of quantum stochastic processes [17].

Experimental measurements of weak values of the photon polarization state have been
reported recently [18]. These results not only confirm the theory outlined by DSS, but also
show theoretically that there is an intrinsic complex-valued weak energy that appears in the
equation of motion for the weak value of an observable when the associated pre-selected and
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post-selected states are explicitly time dependent. This weak energy has been observed in the
experimental data.

Inthis paper, this weak energy is discussed from geometric and dynamical perspectives. In
particular, it is shown that: (a) the imaginary part of the weak energy provides for a variational
description of the dynamics of a pre-selected/post-selected system in projective Hilbert space
in terms of a generalized Fubini—Study metric; (b) the real part of the weak energy is the time
rate of change of a phase acquired by parallel transporting the post-selected state to the ray
containing the pre-selected state along the shortest geodesic joining their images in projective
Hilbert space; (c) the weak value for a composite evolution operator associated with the pre-
selected and post-selected states defines functions of the weak energy which translate in time
the correlation amplitude and probability for the system; (d) correlation probabilities can be
controlled by manipulating the weak energy and a weak stationarity condition exists for which
correlation probabilities are time invariant; and (e) a time-weak energy uncertainty relation of
the usual form prevails when a suitable set of dynamical constraints are imposed. A simple
two state system and the ‘dynamic quantum eraser’ are used to illustrate these results.

2. A geometric interpretation
Following Parkset al [18], the complex-valued weak energl’ — H),, is defined as

(H' — H), = (W' (¢ +/At)|H’ — H|WV (1)) 0
(W' + AW (1))

where|W) and|W¥’) are the non-orthogonal time-dependent normalized pre-selected and post-
selected states, respectively, with

diw(@)) h—d<‘1”(t’)| .
dr d

Heret' =t + At and At is the constant difference between the times of the pre-selection and
post-selection measurements.

Let p be the projective Hilbert space for this quantum system consisting of all the rays
for the associated Hilbert spaté Recall that a ray is an equivalence clagkdf statesy) in
‘H which differ only in phase. There is thus an induced projection fag{ — g such that
lo) — [¢]. The evolution of the pre-selected/post-selected quantum system above is therefore
represented geometrically by two curvegHrsuch that at any time |W) and|¥’) in H have
images V'] = M1(J¥)) and '] = TI(J¥')) in . The distance separating = [¥] and
p' = [¥']in p can be expressed in terms of their pre-images uidasing the generalized
Fubini—Study metric [19-22]

in = H|V()) and — (V' ()| H'. 2)

s2=s5(p/, p)? =41 — (V' |¥)]?) ®)

where, in generall¥) and |¥’) are any normalized states contained in the rayend p/,
respectively.

When p and p’ refer to rays containing the pre-selected and post-selected states,
respectively, then straightforward rearrangement of the time derivative of (3) provides the
important identity

. 0 d
L(s,$) = Im(H' — H), = {(4}_’—22)} <d—j) (4)
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Here, ifs is identified as the generalized coordinate, thén s) satisfies the associatedler—
Lagrangeequation. Hencs, is such that the action

2

= / L(s,s)dt
1

is an extremum ap¥) and|¥’) change with time. The imaginary part of the weak energy

therefore provides a variational description of the dynamics of a pre-selected/post-selected

system ing in terms of the metric given by (3).

It is interesting to note from (4) thdt(s, s) — oo is possible as¥) and|¥’) become
orthogonal. Also, if the distancebetween|W) and|V¥’) remains constant with time, then
(ds/dt) = 0 andL(s, s) = 0. This condition clearly occurs whed) = |¥'), sinces = 0.

Indeed, in this casél’ = H so that (1) vanishes. Thus, a non-vanishing weak energy can
only exist when the time evolution of the pre-selected and post-selected states are governed by
distinct system Hamiltonians.

Anandan and Aharonov [23] have shown that the Pancharatnam phaged2fihed by

(V'|W)
(W)
is the phase difference betweph) and|¢), where|p) is the state contained inl[] obtained
by parallel transporting¥’) along the unique path i which is the pre-image undér of the
shortest geodesic joiningf] and [¥'] in g (the Pancharatnam phase has also been discussed
from a quantum mechanical perspective by Samuel and Bhandari [25}).) Bind |¥’) are

time-dependent pre-selected and post-selected states, respectively, then rearrangement of the
time derivative of (5), along with application of (2), readily yields

dy 1
— == |)Re(H' — H),. 6
o = () R = 0 ©)
Thus, the real part of the weak energy provides the rate of change for the phase acquired by
parallel transporting the post-selected stdté to the pre-selected state’s ray/]
The time integral of (6) can be of value for the study of the geometric quantum phase. As
an example of this, consider the product
da _ (U'(11+ An) W' (2 + Ar)) (Wt + Ap)[W(12) (W (12)|V (1))
(W (t1 + An) [V (52 + An))| [{(W/ (12 + AR) |V (12))| (W (22) | W (1))
y (W ()| V' (11 + An))
(W (1) |W' (11 + Anr))|
Application of thehorizontal lift theorenj26] reveals thaf2 is the phase acquired by parallel

transporting| ¥’ (1 + Arp)) along the paths ir{ which are the pre-images undgr of the
shortest geodesics jn joining this state and the rays in the cycle

W' (t+ Any) — [V (12 + Ar2)] — [W(12)] = [W()] — [V (1 + An)]. )

From (5) it is seen that the second and fourth factors in the product’@ré and e'x),
respectively, so that (6) can be used to obtain

-XE

(W'|W) #£0 )

glx2=x] — exp[i: /fz Re(H' — H), dt |.
h

n .

Substituting this into the product and simplifying the result yields

g2 _ [(xy/ (t + At) |W' (12 + Atp)) (\p(t2)|\p(tl)>:|l/2 p_i

= / ’ Re(H' — H),, dt].
(W (12 + Atp) |W' (21 + Aty)) (W (21)| W (22)) LA Jy
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It can be concluded from this that
2
Q= <%) / Re(H' — H),, dt (8)
f

for pre-selected/post-selected quantum systems for which the factor in brackets is unity.
Before closing this section, it is noted that Aitchison and Wanelik [27] have demonstrated

that a complex geometric pha®ecan be defined for quantum systems with two state vectors.

Examination of their equation (A6) shows that there is an explicit relationship betwagal

the weak energy associated with a pre-selected/post-selected quantum system. Specifically, it

is found that

o _ [ @)1 T (20,
¢ _[W(rznwl»] exD[(zE) / (H *H)wod’} ©)
where
(' +H) = (WA + H|Y (1)
OO

Observe that this relationship now involves than of the weak energies$ the post-selected
and pre-selected states rather than their difference. Also, as denoted by the sulpsthist
sum is defined in terms of simultaneous pre-selected and post-selected statesji.e=for
As before, if the factor in brackets is unity, then

1\ (2, 4
O=<E_>/u (H'+H), dr.

3. Time translators for correlation amplitudes and probabilities

It will now be shown that the weak energy defines a multiplier which relates the correlation
amplitude for a quantum system pre-selected at tina@d post-selected at+ Ar; to that for
a system pre-selectedrat> r; and post-selected at+ Ar,, whereAr; andAt, are constants.
This multiplier is the weak value at of a composite time evolution operator for the system
which moves the pre-selected state;ab that atr, and the post-selected staterat At to
that atr; + Arq.

Using (2) it is readily found that the correlation amplitude for a pre-selected/post-selected
system obeys the differential equation

d(w' (¢')| W '
AN @) _ (I ) (H' — H)u (' ()W (1))

dr h
which, upon integration, yields the result
/ H 17
(W12 + A |V (12)) _ exp[<;)/ (H' — H), dt}_ (10)
(W'(n + An) W (1)) h)Jy

Let H” and H be time independent and consider the composite time evolution operator
T(t1,12) = U (11 + Aty 12+ Arp) U (11, 1)

where
n i ~
U'(t1 + A1, tr + Atp) | W' (11 + An)) = exp[— <ﬁ> H'(t+ Aty — 11 — All)] W' (11 + Aty))

= |V (1 + Atp))
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and

A i\ A

U(ty, 2)|¥ (1)) = exp|:— (ﬁ) H(t; — tl):||‘1’(t1)) = |W(1r2)).

Now define the weak value atfor this composite operator in the usual manner:

(W' (11 + AT (11, 12)| W (11))
(W' (11 + At) | W (21))

(T (11, 12))

where
(W' (11 + Ar)|¥ (1)) #O.
This obviously yields
(V(12 + Atp) |V (1))
T(t1, 1)), =
T 12D = 14, + A [0 )
and may be rewritten using (10) as

(T(tl, tZ))w = eXp[(,%) / Z(H/ - H)w dt:| (11)

or equivalently
. (2 [dx 1 f2 )
(T (t1, 12))y = EXp[I/ﬁ (E) dr — (ﬁ)/ﬁ L(s,s)dt]

(W't + AR) W (1)) = (T (12, 12)),, (W't + A1) W (11))

and (11) serves as a multiplier which relates correlation amplitudes in time. Here the real
(i.e. (dx /dr)) and imaginary (i.eL(s, s)) parts of the integrand of (11) capture and transfer
from one amplitude to another the essence of the associated temporal changes in Hilbert space
dynamics inp and the phase acquired from parallel transpotijmespectively. Observe that
when (8) applies, this phase is that which results from parallel transport of the post-selected
state along cycle (7) as described in the previous section. It is also interesting to note that the
indefinite form for (11) is the integrating factor for the general equation of motion for the weak
value of a quantum mechanical observable (e.g. equation (3.7) in €aakid 8]).

It is easily seen using (11) that the complex ph@si (9) vanishes wherid = 0 or
H =0. Specifically, ifAt; = 0 = Atp, then

Thus,

(T (1. 12)) /% = exp[—'—_ / (H')uo dt} H=0
0 2h "

[w]/ _
v v i 7] ~
(W' (1) | W (1)) (T (1. 12)? = exp[_z'h__/ (H ) dt] H'=0.

In either case, the right-hand side of (9) is unity &he= 0.
The square modulus of (11) defines another multiplig(z,, o) that translates correlation
probabilities in time. In particular,

(W (12 + At) W (12)) 12 = Ay (tr, 22) (W (11 + Aty) W (1)) |2

where

2 2
Aw(tla t2) = |(T(t1’ t2))w| = exp| — i

/rz Im(H' — H), dtj| (12)

I
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or equivalently

2 f2 .
Ay(ty, 1) = exp[— (ﬁ)/ L(s, s)dt].

Unlike the case fofT (11, 12))w, Ay (11, t2) transfers only the-related dynamical information;
as expected, the parallel transport phase information is lost.

4. Correlation control and weak stationarity

It is implicit from the previous discussion that the correlations for systems that are both pre-
selected and post-selected can be controlled by manipulating the associated weak energy. The
quantity A, (1, ) can be used to provide a relative measure of the correlations for such
systems at different times. In particular, if

IMH — H)y =T

is continuous on the closed interval,[r2], then, according to thirst mean-value theorem for
integrals there is a tim& in the open intervalts, t2) for which

7]
/ Im(H — H),, di = (12 — 11) ¢

I

whereY; is T evaluated at = £. Application of this allows (12) to be rewritten as

27;
Ay (11, 12) = €XpP —T(tz —1t)|.

Here it can be seenthat fa: > 0 (Y < 0) the correlation for a quantum system pre-selected
atr, and post-selected at+ Az, will have decayed (growndppreciably from one pre-selected
atr; and post-selected at+ Ar; only when

h

l2—t1>m
H

(13)
where the ratid:/(2| Y |) is themean lifetimeor the correlation in the intervaly, z,].

A system isweakly stationarywhen the mean lifetime for the associated correlation is
infinite. Then the correlation amplitudes for systems pre-selected at the end points of the
interval [r1, 2] will differ at most by a phase factor so that, (s1, ;) = 1. There is then no
decay or growth associated with the correlations at these times. As can be seen from (13), this
obviously occurs whea is ar intercept for the graph of" so thatY; vanishes (e.g. when
is the midpoint for the intervalt], o] and the graph ofr is symmetric with respect tg in
[r1, 12]). Trivial stationarity exists when(H),, = 0 = (H’),, during [1, 72] so thatY: = O for
all £ in the interval. Such a system is weakly stationary and the following implication holds:

trivial stationarity=- weak stationarity

When both| W) and|W¥’) are stationary, then the systenbisstationary In this caseY = 0
for all ¢. This is clearly a strong form of weak stationarity so that the implication

bi-stationarity= weak stationarity

is valid.
Before concluding this section, it is noted that the existence of trivial stationarity during
an interval |y, r] provides an interesting ratio equivalence between the valugsaatd r,
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for non-diagonal matrix elements for an observablend the associated weak values(r),
where
(W'(t + AD[A|W (1))

Aw(t) = .
(W't + An)[W (1))

This follows directly from the fact that if trivial stationarity prevails during a time interval
[t1, 2], then

(T, )w=1 = (Y (a+An) |¥(n) = (V' (2+Ar) V().
Straightforward application of this equality to the last equation yields

Au(t2) _ (V12 + Arp) AW (12))
Ap(t) (W't + A AW (1))

Thus, the ratio on the right (left) side of the equality serves as a multiplier which moves the
weak value (non-diagonal matrix element) fromritsalue to its value at.

5. Weak energy dynamics: a special case

As was seen in section 3, the weak energy is responsible for the temporal changes in the
correlation amplitude. For this reason, the dynamical characteristicH'of H),, are of
general interest. These characteristics can be obtained from an examination of the properties
of its equation of mation.

The equation of motion for the weak energy is readily obtained by using (2) in the time
derivative of (1) and is given by

dH' — H), (i - ) 5 , ) d(H' — H)
— = (}:l) {(H? —2H'H + H?) — (H' — H),} + (T)

When this derivative vanishes, theH’ — H),, = v is aweak constant of the motiandy
is agood weak quantum number

Consider now the special case where the commutatord’] = 0 and di/dr =
dH’/dr = 0, i.e. whenH and A’ aremutual constants of the motiofrhen the last equation
may be written as

g = o _ _p2 gy _ gy (14)
dr
where

AS(H' — H) = {(H' - H)?} — (H — H)

is the weak variance for the weak energy. Tieak energy uncertainf@] is related to this
weak variance via

A(H' = H), = |A2(H — H)|".
Using (14) in this equation yields

r 1/2
A(H' — H), =h? d(Hd—tH)‘” (15)
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Let T represent the characteristic time required for the weak energy to be changed by an
amount equal to the width (H’ — H),, of its statistical distribution. Then, in general,
_ A(H'—H),
B |(d(H/ - H)w)/dt| .

This suggests that appreciable differences between correlation amplitudes should be expected
only for times with differences significantly greater thanAlso, it would be anticipated that
7 is generally infinite wheiH' — H),, is a good weak quantum number. This would imply
that the amplitude is weakly stationary.

However, substitution of the square of (15) into the denominator of the last equation shows
that whenH and A’ are mutual constants of the motion, themust adhere to the following
time-weak energy uncertainty relation

tA(H — H),, =h.
When these conditions prevail, this equation may be used to rewrite (13) as

A(H — H),
tz—tl>¥. (16)

Hence, under these conditions and regardless of the valugwéak stationarity can exist

only whenY; vanishes. Thus, whetH' — H),, is a good weak quantum number (15)
vanishes and is infinite so that the numerator for (16) remains constant as required and weak
stationarity does not generally exist. This is easily seen by lettthg— H),, = yo + iy,
whereyy and y; are fixed real numbers. TheYi; = y; and the right-hand side of (16)

is finite unlessy; = 0. Observe that this is precisely the situation that occurs for trivially
stationary systems and bi-stationary systems. There the Hamiltonians are obviously mutual
constants of the motion and the associated weak energy is a good weak quantum number with
yw=ImH — H), =0=Im(H'),.

6. A two state example

For the purpose of illustrating the results developed above, they will be applied to a simple
two state system witiht = «, x a constant. Let

W' (t+ A1) = |V (£ +k)) = COSw (t + k) |@) +SiNw (t + k) |¢)
where(p|¢’) = 0 andw is a constant. Assume that
| (1)) = cospole) +isinpole’)

with Bo constant, i.e|W) is fixed for all time, so thaf = 0. Using (2) it can be determined
that H' = hwé,, whereg, is the usual Pauli spin operator. Hendé,and H’' are mutual
constants of the motion. Then from (1),

haw sin 289
2{cog By — cos Bosir o (t +«)}

Re(H' — H)y, = Re(H'),, =

and
hw {cos By Sinw (1 + k) COSw (1 + k)}
{cog Bocog w (t + k) +sir? osiP o (t +x)}

Im(H — H),, =Im(H"), =
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If 4 = 0 andr, = ¢, then (11) and (12) yield

cof By — cos By Sit w (¢ + k) :| vz

T w —
(r'@.2)) [ cog By — oS By Sin’ wk

x expi {tan ! [tanfo tanw (¢ + )] — tan™ ! [tanBo tanwk] }]
and

cog By — €os By Sirt w (¢ + k)
cog By — cos By sif wi

Aw(oa {) =

Thus, as required,
(W' +10)|W (&) = (T(0, ) (¥ (k)| W(0))
= [cos Bo — cos Bosi w (¢ + /c)]l/2 explitan™ [tanfo tana (¢ + )] |
and
(W + 0@ = A0, 0) [(¥' ()W (0) |
= co% By — €0S Bo SI w (¢ + k).

The following observations are of pedagogical value:

(a) Here (8) applies and
Q = tan ! [tanSo tanw (¢ + «)] — tan ! [tan B tanwk]

is the phase acquired by parallel transportidg(x)) in the system’s Hilbert space as

prescribed by cycle (7). Note that in this cadgr,)) = |V (2)) so that the image of this

cycle in the associated projective Hilbert space follows geodesics that are the sides of a

spherigal triangle on the Poin&sphere.
(b) SinceH = 0, the complex phase in (9) vanishes wher = 0.
(c) Correlation decay can be induced into this two state system by manipulating the weak

energy parametets andx associated with the post-selected state. In particular,

Au(0,0) <1 = cog By—cosBysit w(l +k) < coF By — oS Po Sin’ wk
= sifw(C +k)—sifwk > 0= sinw( +2) sinw¢ > 0

. . 2k 2k + D
= correlation decay exists wheA— < ¢ < ——— —
w
or
2k+1 2(k+1 ,
u<§<g—2k with 2¢ < =~
w w w

wherek is a non-negative integer.
(d) Correlation growth can also be induced by manipulatirendx« so that
2(k+1 2k +1
k+Dr o, ,  2k+Dx
or

(2k + D (2k+hm
- é’ < —

— 2 < with « #£0

wherek is a non-negative integer.



2564 A D Parks

(e) The system can be made weakly stationary through proper selection of the weak energy
parameters andx associated with the post-selected state. Specifically,

Ay(0,2) =1 = the system is weakly stationary when= l%
wherek is a positive integer.
(f) For anyr andk a non-negative integer,
fo=32k+DHr = ReH —H),=+ho and ImMH — H),, =0
= (H' — H), is a good weak quantum number
and
Im(H'—H),=0 = Y=7:=0 = thesystemisweakly stationary.

(g) For anyr the system conforms to the time-weak energy uncertainty relation. This can be
easily confirmed for selected valuesgffrom the following independent calculations:

Bo=0,7r = ReH —-H),=0 and IMH' — H),, = hotanw (t +«)

= A2(H - H)=hv*seCo(t+k)
= A(H — H), =hwsecw (t +«)
= t1=[wsew(+«x)]?!
since
d(H' — H), _ _
‘% —Tiw?seCw(t+k) = TAH —H)y=F.
Similarly,
fo=3m 3n = ReH —-H),=0 and IMH —H),=—hocoto (t+xk)
= A%(H' — H) = hPw?cosebw (t +«)
= A(H — H), =hwcosew (t + k)
= 1 =[wcosea (r+k)]*
since

d(H' — H),, — s
‘¥ =hw?cosebw (t+x) = tA(H —H), =h.

dr

7. The dynamic quantum eraser: time-dependentvelcher Wegnformation and weak
stationarity

In order to provide additional clarity concerning the previous results, they will be applied to a
specific pre-selection/post-selection system-the ‘dynamic quantum eraser’. This apparatus is
identical to the ‘static’ quantum eraser discussed by Kefiad [28], except that the two linear
photon polarization filters are rotating with angular speedandw,, respectively. Here, two
beams of identical linearly polarized conjugate photon pairs are produced from pump photons
via a type-l down-conversion process. These beams traverse distinct paths of equal length
and (after a half-wave plate orthogonal rotation of the polarization states of the photons in
one of the beams) converge upon the input ports of a 50/50 beamsplitter. There are two paths
through the beamsplitter which can result in coincidence counts at the photon detectors (i.e.
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both photons are transmitted or both are reflected). Their indistinguishability is responsible
for the loss of which pathwelcher Wejyphotons follow through the apparatus.

In the absence of the filters the orthogonal polarization states ‘tag’ photons and provide
the welcher Weg information necessary to obviate the fourth-order interference in coincidence
count (observed as a null in the count) that would occur had the orthogonal rotation (‘tagging’)
not been performed on the photons in one of the beams. When non-rotating polarization filters
are inserted in the paths between the output ports of the beamsplitter and the photon detectors,
they can be used to ‘erase’ the welcher Weg information resident in the polarization states and
restore the interference null in coincidence count. Then the coincidence count profile (i.e. the
coincidence count probability) for the static quantum eraser is give}m}?(eg — 61), where
6, andé, are the fixed angular settings for the filters.

The quantum eraser is clearly a pre-selection/post-selection apparatus for conjugate
photon pairs. The down-conversion process, when coupled with the half-wave plate and
beamsplitter, pre-selects entangled photon pair polarization and number states given by

W) = 1{1171]) — 11714}

where only those terms related to coincidence count have been retained. Here, the superscripts
denote the polarization state (iH. = ‘horizontal’ andV = ‘vertical’), subscripts denote

the beamsplitter output ports andefers to the time at which the photon pair ‘exits’ from the
beamsplitter. When the filters are rotating in the dynamic quantum eraser, they post-select the
tensor product state

W/ (t +8)) = {cos[wa(t +8) +61] |1]) + sin[wy(r +8) +61] [11)}

x {cos[wa(t +8) +62] |115)) + sin[w,(t +8) +62] |113)}

wheres is the constant difference between pre-selection and post-selection times. Clearly, the
dynamic quantum eraser produces time-dependent welcher Weg information.
It is apparent that for this apparatés = 0. Also, using (2) it can be easily determined

that
L 0 5, _ 0 o
H = hwy . - —1hwy . -
o, O -6, O

where0 is a 2x 2 zero matrix andr, ando, are the usual Z 2 Pauli spin matrices (the
assumed matrix order for the post-selection basis stat@é§ i), |17 1)), 171, |1} 14)).
From these, the weak energy for the system is readily found to be

(H' — H)y = (H")y = ih(w2 — 1) COt[(w2 — w1)t + (w2 — w1)8 + (2 — 61)].
Observe that the system is weakly stationary for time intervals.[], where
(ks + D)7 —2(0—61) £ 2¢

fL+8 = 0< 1 k.=01,2,... k_<ks.
* 2(w2 — w1) $=am v

Then the coincidence count probabilit€ggiven in general by
C = [(W'|W)[? = Fsin’ [(w2 — @)1 + (02 — w1)8 + (62 — 6)]

for photon pairs post-selectedrat+ § are equal with valué cog ¢. Equivalent welcher Weg
information is therefore produced by the system at these times.

SinceH’ and A are mutual constants of the motion ahi fixed, the system conforms
to the time-weak energy uncertainty relation with

A(H' — H),, =h (w2 — w1) cosec[wy — w1)t + (w2 — w1)8 + (62 — 61)].
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If w1 # wy, thenC = 0 (i.e. all welcher Weg information is lost) when

Il e P S
w2 — w1
Note that in this case, the complete erasure of welcher Weg information occurs exactly at
those times for which the weak energy and its uncertainty are infinite (and the pre-selected and
post-selected states are orthogonal).
Also of interest is the case whatg = w, = w so that there is no time-dependent welcher
Weg information produced by the rotating filters. Thendpe 6,, (H' — H),, = (H'),, =0
is a good weak quantum number and the system is trivially stationary fwith — H),, = 0
andr — oo) so thatC is constant in time with value

C = 1sit (6, — 0).

Thus, the coincidence counts (and associated welcher Weg information) produced by a trivially
stationary dynamic quantum eraser and a static quantum eraser with the same initial filter
settings are identical.

8. Concluding remarks

This paper has provided a description of weak energy in terms of its associated Hilbert space
geometry and dynamics. Its general significance for pre-selected/post-selected systems has
also been discussed in terms of a weak stationarity condition for the associated correlation
probabilities and a time-weak energy uncertainty relation. Applications of the theory to a
general two state quantum system and the ‘dynamic quantum eraser’ suggest that techniques
developed from this theory may be of value for the temporal control of quantum correlations,
as well as for the experimental measurement of related kinematic parameters. Finally, since the
definite time integral of the real part of the weak energy provides a measure of the difference
in parallel transport phase acquired in Hilbert space at distinct times, this aspect of the theory
should also prove useful for the study of geometric quantum phase.
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